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Abstract

Stationary and laminar forced convection in a circular duct is analyzed in the case of a sinusoidal axial change of
the wall heat ¯ux such that the modulus of its mean value is either zero or equal to the amplitude. The e�ect of the
axial heat conduction in the ¯uid is taken into account. Reference is made to the thermally developed region where

the temperature distribution can be expressed as the sum of a linear function and a periodic function of the axial
coordinate. The temperature ®eld as well as the local and mean Nusselt numbers are evaluated analytically.
Comparisons with the solution in the absence of axial heat conduction are performed. 7 2000 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

The interest deserved to the subject of laminar
forced convection in circular ducts is mainly due to its

importance in many technological applications which

range from heat exchangers to solar collectors. The
most important results available in the literature are

outlined in review papers of Shah and London [1],

Kays and Perkins [2], Shah and Bhatti [3].

The e�ect of the axial heat conduction in the ¯uid

has been investigated in many papers which refer to
di�erent kinds of boundary conditions. It is well

known that, when the Peclet number is small, the axial

heat conduction in the ¯uid becomes relevant. Then,

this e�ect can be very important for ¯uids with a small
Prandlt number as, for instance, liquid metals.
Analytical solutions of the local energy balance

equation by taking into account the e�ect of axial
heat conduction in the ¯uid have been obtained by
Soliman [4], Ebadian and Zhang [5,6], Yin and Bau
[7] and Olek [8]. Soliman [4] considers a slug ¯ow

within a circular duct, which is heated over a ®nite
length with a uniform wall heat ¯ux and is exter-
nally insulated both upstream and downstream of

the heated region. Plots of the dimensionless heat
¯ux, bulk temperature, wall temperature as well as
of the Nusselt number versus the dimensionless

axial coordinate are reported. Axial conduction both
in the wall and in the ¯uid is taken into account,
and all the plots are drawn for two di�erent values

of the Peclet number: Pe � 5 and 50. In Refs. [5,6],
the Fourier transform method is employed in order
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to evaluate analytically the mixed mean temperature,
the heat ¯ux and the Nusselt number for a bound-
ary condition given by a step change of the wall

temperature. These quantities are then plotted
against the axial coordinate for di�erent values of
the Peclet number (varying from 3 to 150). More-

over, in Ref. [6], the e�ects of a heat generation
within the ¯uid are taken into account and plots of
the mean Nusselt number versus the heat generation

number for di�erent values of Pe (in the range
from 0.5 to 10) are reported. Yin and Bau [7] con-
sider both Poiseuille ¯ow and slug ¯ow in a duct
with boundary conditions of either uniform wall

temperature or uniform wall heat ¯ux. In Ref. [8],
an eigenfunction expansion is used to derive a sol-
ution of the energy equation for a non-Newtonian

¯uid, with boundary conditions of either uniform
wall temperature or external convection.
Numerical solutions, based on the ®nite di�erence

method, have been recently developed by Fahgri et al.

[9], Nguyen [10] and Bilir [11,12]. Fahgri et al. [9] in-
vestigate a conjugate heat transfer problem, by consid-
ering an internal ¯ow with blowing or suction in a

duct with a porous wall. Plots of the temperature, the
heat ¯ux and the Nusselt number at the internal sur-
face of the wall are drawn against the axial coordinate

for two di�erent values of the Peclet number, i.e. Pe �
100 and 1000. Nguyen [10] considers boundary con-
ditions given by a step change either of the wall tem-

perature or of the wall heat ¯ux. In the case of
prescribed wall heat ¯ux, the author reports a table of
the local and fully developed Nusselt numbers for
di�erent values of the Peclet number. In Ref. [11], the

thermal entrance region is investigated with two di�er-
ent boundary conditions: (1) a step change of the wall
temperature; (2) a step change of the wall heat ¯ux. In

the case of prescribed wall heat ¯ux, plots of the local
Nusselt number are drawn against the axial coordinate
for di�erent values of Pe (varying from 1 to 50). In

Ref. [12], a step change of temperature at the external

Nomenclature

a complex dimensionless parameter, �
�1ÿ oL�=2

B dimensionless parameter, � 2r0Pe b
C0 constant introduced in Eq. (16)

1F1 con¯uent hypergeometric function

1F 01 derivative of the con¯uent hypergeo-

metric function, given by Eq. (31)
G�a, o� integration constant introduced in Eq. (27)
h local convection coe�cient, �

qw=�Tw ÿ Tm� (W/(m2 K))
i imaginary unit, � �������ÿ1p
k thermal conductivity (W/(m K))
L constant such that x � ÿL is the inlet

section of the pipe (m)
n non-negative integer
Nu Nusselt number, � 2r0qw=�k�Tw ÿ Tm��
Nu mean value of Nu in an axial period
Pe Peclet number, � 2r0 �u=a
qw wall heat ¯ux (W/m2)

q0 constant introduced in Eq. (1) (W/m2)
r radial coordinate (m)
r0 radius of the pipe (m)

s, t complex dimensionless parameters
T temperature (K)
Te inlet temperature (K)
u velocity component in the axial direction

(m/s)
�u mean value of u (m/s)
x axial coordinate (m)

z complex variable

Greek symbols
a thermal di�usivity (m2/s)
b constant de®ned by Eq. (1) (mÿ1)
g dimensionless parameter de®ned by Eq.

(1)
G Euler's gamma function

Z dimensionless radius, � r=r0
W dimensionless temperature, �

k�Tÿ Te�=�r0q0�
W0, W1, W2 dimensionless functions de®ned by Eq.

(8)
L dimensionless complex parameter, �

1ÿ iB=�2Pe2�
m dynamic viscosity (Pa s)
n kinematic viscosity, � m=r (m2/s)
x dimensionless axial coordinate, �

x=�2r0Pe�
xe dimensionless axial position of the inlet

section, � ÿL=�2r0Pe�
xn dimensionless constant de®ned in Eq.

(40)
r mass density (kg/m3)

c dimensionless function, � W1 � iW2
o dimensionless complex parameter, ��������������ÿiB=8p

Subscripts
m mixing-cup quantity de®ned by Eq. (17)
w quantity evaluated at the wall
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surface of the wall is considered and axial heat conduc-
tion is supposed to be present both in the ¯uid and in

the wall. Three di�erent values for the Peclet numbers
are considered: Pe � 1, 5 and 20. The bulk tempera-
ture and the local Nusselt number, as well as the wall

heat ¯ux and the wall temperature evaluated at the
interface between solid and ¯uid, are plotted against
the axial coordinate.

The boundary condition of axially varying wall heat
¯ux has been considered in Refs. [13] and [14]. Pearl-
stein and Dempsey [13] plot both the bulk temperature

and the temperature distribution in the thermal
entrance region, for various Peclet numbers. These
authors refer to wall heat ¯uxes which undergo an
axial variation given either by a sinusoidal distribution

or by a hyperbolic tangent distribution. In Ref. [14], a
boundary heat ¯ux which changes axially with an ex-
ponential law is considered and the fully developed

Nusselt number is determined analytically.
For engineering applications, it is well known that

periodic axial changes of wall heat ¯ux are of great

technical interest as, for instance, in the design of cool-
ing tubes for nuclear reactors and in the analysis of
heat transfer in the heat exchangers of Stirling-cycle

machines. Boundary conditions of this kind have been
employed in Ref. [15] and represent the simplest kind
of axially periodic heating or cooling. Ref. [15] deals
with the behavior at a su�ciently great distance from

the inlet section. In this region, forced convection is
hydrodynamically developed and the temperature dis-
tribution can be expressed as the sum of a linear func-

tion and a periodic function of the axial coordinate.
The aim of the present paper is an improvement of

the analysis presented in Ref. [15] in order to take into

account the e�ect of axial heat conduction in the ¯uid.
The laminar forced convection in a circular duct is
investigated in the case of a sinusoidal axial variation
of the wall heat ¯ux. The energy equation is solved

analytically and expressions of the temperature ®eld as
well as of the local and mean Nusselt numbers are
obtained in terms of the con¯uent hypergeometric

function.

2. Governing equations

In this section, the energy equation together with its
boundary condition given by a sinusoidal heat ¯ux dis-
tribution are written in a dimensionless form and

solved analytically.
Let us consider an in®nitely long circular duct with

radius r0 crossed by a Newtonian ¯uid such that its

thermal conductivity k, dynamic viscosity m and ther-
mal di�usivity a can be treated as constants. A regime
of laminar and fully developed forced convection is

assumed. The e�ect of viscous dissipation is considered
as negligible, while the axial heat conduction in the

¯uid is taken into account.
Let us assume that a sinusoidal axial variation of

the heat ¯ux density is present at the duct wall, namely

qw�x� � q0
�
g� sin�bx��, �1�

where g is a dimensionless parameter which can be

either 0 or 1. If g � 1, Eq. (1) yields a periodic wall
heat ¯ux distribution such that the amplitude of the
oscillations coincides with the modulus of its mean

value. This case corresponds either to ¯uid heating or
to ¯uid cooling, depending on the sign of the constant
q0. On the other hand, if g � 0, both for q0 > 0 and

q0 < 0, the wall heat ¯ux distribution has a vanishing
mean value.
At the inlet of the pipe, which is placed at x � ÿL,

the temperature is supposed to be uniform with value

Te:
In the region of hydrodynamically developed ¯ow,

the energy equation can be written as

@

@r

�
r
@T

@r

�
� r

@ 2T

@x 2
ÿ u�r�r

a
@T

@x
� 0, �2�

where u(r ) is the ¯uid velocity distribution, given by
the well known Hagen±Poiseuille expression:

u�r� � 2 �u

"
1ÿ

�
r

r0

�2
#
: �3�

By introducing the dimensionless temperature
W � k�Tÿ Te�=�q0r0�, the Peclet number Pe � 2r0 �u=a,
the dimensionless radius Z � r=r0 and the dimension-
less axial coordinate x � x=�2r0Pe�, Eq. (2) can be

rewritten in the dimensionless form

@

@Z

�
Z
@W
@Z

�
� Z

4Pe2
@ 2W

@x2
ÿ 1

2
Z
ÿ
1ÿ Z2

�@W
@x
� 0: �4�

As it is shown by Eq. (4), the e�ect of the axial heat
conduction in the ¯uid becomes relevant only if the
Peclet number is su�ciently small. The condition of
negligible axial conduction corresponds to the limit

Pe41:
The boundary condition on temperature is as fol-

lows:

k
@T

@ r

����
r�r0
� qw�x�: �5�

If the boundary heat ¯ux is expressed by Eq. (1), Eq.
(5) can be rewritten as

@W
@Z

����
Z�1
� g� sin�Bx�, �6�
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where the dimensionless parameter B � 2r0Peb is
employed. Moreover, the following symmetry con-

dition at Z � 0 is required:

@W
@Z

����
Z�0
� 0: �7�

At axial positions su�ciently distant from the inlet sec-
tion of the tube, the solution of Eq. (4) can be written

as

W�Z, x� � 8gx� W0�Z� � W1�Z�sin�Bx�

� W2�Z�cos�Bx�, �8�

where the functions W0�Z�, W1�Z� and W2�Z� can be deter-

mined by substituting Eq. (8) into Eqs. (4), (6) and (7).
In fact, Eqs. (4), (6) and (7) yield

d

dZ

�
Z

dW0
dZ

�
ÿ 4gZ

ÿ
1ÿ Z2

�
�
"

d

dZ

�
Z

dW1
dZ

�
� B

2
Z
ÿ
1ÿ Z2

�
W2 ÿ B 2

4Pe2
ZW1

#

� sin�Bx� �
"

d

dZ

�
Z

dW2
dZ

�
ÿ B

2
Z
ÿ
1ÿ Z2

�
W1 ÿ B 2

4Pe2
ZW2

#
� cos�Bx� � 0, �9�

dW0
dZ

����
Z�1
�
"

dW1
dZ

����
Z�1
ÿ1
#

sin�Bx� � dW2
dZ

����
Z�1

cos�Bx� � g,

�10�

dW0
dZ

����
Z�0
�dW1

dZ

����
Z�0

sin�Bx� � dW2
dZ

����
Z�0

cos�Bx� � 0: �11�

Eqs. (9)±(11) can be integrated with respect to x in the
interval �0, 2p=B � and yield

d

dZ

�
Z

dW0
dZ

�
ÿ 4gZ

ÿ
1ÿ Z2

�
� 0,

dW0
dZ

����
Z�1
� g,

dW0
dZ

����
Z�0
� 0: �12�

By multiplying both sides of Eqs. (9)±(11) by sin�Bx�
and by integrating with respect to x in the interval

�0, 2p=B �, one obtains

d

dZ

�
Z

dW1
dZ

�
� B

2
Z
ÿ
1ÿ Z2

�
W2 ÿ B 2

4Pe2
ZW1 � 0,

dW1
dZ

����
Z�1
� 1,

dW1
dZ

����
Z�0
� 0: �13�

Finally, by multiplying both sides of Eqs. (9)±(11) by
cos�Bx� and by integrating with respect to x in the

interval �0, 2p=B �, one obtains

d

dZ

�
Z

dW2
dZ

�
ÿ B

2
Z
ÿ
1ÿ Z2

�
W1 ÿ B 2

4Pe2
ZW2 � 0,

dW2
dZ

����
Z�1
� 0,

dW2
dZ

����
Z�0
� 0: �14�

If one introduces the complex valued function
c�Z� � W1�Z� � iW2�Z�, Eqs. (13) and (14) can be col-

lapsed into a unique boundary value problem, namely

d

dZ

�
Z

dc
dZ

�
ÿ i

B

2
Z
ÿ
1ÿ Z2

�
cÿ B 2

4Pe2
Zc � 0,

dc
dZ

����
Z�1
� 1,

dc
dZ

����
Z�0
� 0: �15�

An integration of the di�erential equation which
appears in the boundary value problem expressed by

Eq. (12) yields

W0�Z� � gZ2 ÿ g
Z4

4
� C0, �16�

where C0 is an integration constant.

It can be easily proved that the boundary conditions
which appear in Eq. (12) are satis®ed for any value of
the integration constant C0:
The value of C0 can be determined by considering

the mixing-cup temperature of the ¯uid, de®ned as

Tm�x� � 2

�ur20

�r0
0

�
T�x, r�u�r� ÿ a

@T�x, r�
@x

�
r dr: �17�

The physical meaning of the mixing-cup temperature
in forced convection problems with a relevant axial
heat conduction in the ¯uid is widely discussed in the

papers by Tamir and Taitel [16] and Barletta and Zan-
chini [14].
By employing the dimensionless mixing-cup tem-

perature Wm � k�Tm ÿ Te�=�q0r0�, Eq. (17) can be
rewritten in the dimensionless form

Wm�x� � 2

�1
0

�
2
ÿ
1ÿ Z2

�
W�Z, x� ÿ 1

Pe2
@W�Z, x�
@x

�
Z dZ:

�18�

The mixing-cup temperature of the ¯uid is related to
the wall heat ¯ux by the energy balance equation [14]

dTm�x�
dx

� 2a
k �ur0

qw�x�: �19�
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Since the inlet temperature is uniform with value Te,
by integrating Eq. (19) with respect to x in the interval

[ÿL, x ], one obtains

Tm�x� ÿ Te � 2aq0
�ukr0

�
g�x� L� � cos�bL� ÿ cos�bx�

b

�
:

�20�
Eq. (20) can be rewritten in a dimensionless form

Wm�x� � 8g�xÿ xe � �
8

B
cos�Bxe � ÿ

8

B
cos�Bx�, �21�

where xe � ÿL=�2r0Pe� is the dimensionless axial pos-
ition of the inlet section. On the other hand, on

account of Eqs. (8) and (18),

Wm�x� � 8gx� W0m ÿ 8g
Pe2
�
"
W1m � 2B

Pe2

�1
0

W2�Z�Z dZ

#

� sin�Bx� �
"
W2m ÿ 2B

Pe2

�1
0

W1�Z�Z dZ

#
cos�Bx�:

�22�

A comparison between Eqs. (21) and (22) yields

W0m � 8

B
cos�Bxe � ÿ 8gxe �

8g
Pe2

: �23�

As a consequence of Eqs. (16) and (18), W0m can be
also written as

W0m �
�1
0

4Z
ÿ
1ÿ Z2

�
W0�Z� dZ � 7

24
g� C0: �24�

Eqs. (23) and (24) yield

C0 � 8

B
cos�Bxe � ÿ 8gxe �

8g
Pe2
ÿ 7

24
g: �25�

By comparing Eqs. (16) and (25) with the expressions
of W0�Z� and C0 in the limit Pe41 obtained in Ref.
[15], one can conclude that the axial heat conduction

in the ¯uid a�ects the axially-averaged dimensionless
temperature only through the additive constant 8g=Pe2

in the expression of C0: Obviously, this term vanishes

in the case g � 0:
On account of Eq. (15), c�Z� is a solution of the

di�erential equation

d2c
dZ2
� 1

Z
dc
dZ
ÿ i

B

2

�
1ÿ iB

2Pe2
ÿ Z2

�
c � 0: �26�

The most general solution of Eq. (26) which ful®lls the
condition dc�Z�=dZjZ�0 � 0, i.e. which is ®nite at Z � 0,

can be expressed as [17]

c�Z� � G�a, o�eÿoZ2 1F1

ÿ
a, 1; 2oZ2

�
, �27�

where G�a, o� is an integration constant, 1F1 is the
con¯uent hypergeometric function and

L � 1ÿ iB

2Pe2
, o �

����������
ÿiB
8

r
, a � 1ÿ oL

2
�28�

are complex dimensionless parameters.
The con¯uent hypergeometric function is de®ned as

follows:

1F1�s, t; z� �
G�t�
G�s�

X1
n�0

G�s� n�
n!G�t� n�z

n, �29�

where G is Euler's gamma function. The most import-
ant properties of the con¯uent hypergeometric function

1F1 are widely discussed in the textbook by Slater [18].

Recently, the con¯uent hypergeometric function has
been employed by Piva [19,20] to analyze the laminar
forced convection in circular ducts either with an expo-

nential wall heat ¯ux or with a relevant e�ect of wall
axial conduction.
On account of Eqs. (27) and (28), the complex func-

tion c�Z� depends on Pe only through the parameter a.

Fig. 1. Plots of Wÿ C0 vs. Z and x for g � 1 and B � 100, for

Pe � 10 (upper frame) and 100 (lower frame).
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The constant G�a, o� can be determined by substi-
tuting Eq. (27) into the boundary condition which

appears in Eq. (15), namely

1 �dc�Z�
dZ

����
Z�1
� 2G�a, o�oeÿo

�
2 1F 01�a, 1; 2o�

ÿ 1F1�a, 1; 2o�
�
, �30�

where the derivative of the con¯uent hypergeometric
function is given by [18]

1F 01�s, t; z� �
d

dz
1F1�s, t; z� �

s

t
1F1�s� 1, t� 1; z�: �31�

Eqs. (30) and (31) yield

G�a, o� � eo

2o
�
2a 1F1�a� 1, 2; 2o� ÿ 1F1�a, 1; 2o�

� :
�32�

In Figs. 1 and 2, three-dimensional plots of the dimen-
sionless temperature ®eld are presented. Both the plots
reported in Fig. 1 refer to the case g � 1 and B � 100

and have been drawn for two di�erent values of the

Peclet number: Pe � 10 and 100. The plots which
appear in Fig. 2 refer to the case g � 0, for the values

of the parameters B and Pe considered in Fig. 1. It
can be easily checked that the dimensionless tempera-
ture distributions for Pe � 100 are very close to those

in the case Pe41, i.e. in the case of a negligible axial
conduction. Both ®gures show that the amplitude of
the temperature oscillations rapidly decreases moving

from the wall to the axis of the duct. Moreover, the
amplitude of the sinusoidal waves is signi®cantly
reduced when Pe decreases. The latter feature is

emphasized in Fig. 3, where plots of the dimensionless
wall temperature versus the dimensionless axial coordi-
nate are reported. The plots have been drawn for B �
100 and for three di�erent values of the Peclet number:

Pe � 1, 10 and 100. The plots in the top frame refer to
the case g � 1, while those in the bottom frame refer
to the case g � 0:

3. Local and fully developed Nusselt numbers

By employing the dimensionless temperature W, the
Nusselt number can be expressed as

Fig. 3. Plots of Ww ÿ C0 vs. x for B � 100 and Pe � 1, 10 and

100; the upper frame refers to the case g � 1, while the lower

one refers to the case g � 0:
Fig. 2. Plots of Wÿ C0 vs. Z and x for g � 0 and B � 100, for

Pe � 10 (upper frame) and 100 (lower frame).
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Nu � 2r0qw

k�Tw ÿ Tm � �
2
�
g� sin�Bx��
Ww ÿ Wm

: �33�

On account of Eqs. (8), (16), (21) and (25), Ww ÿ Wm is

given by

Ww ÿ Wm �
�
11

24
� 8

Pe2

�
g� W1�1� sin�Bx�

�
�
W2�1� � 8

B

�
cos�Bx�, �34�

where W1�1� and W2�1� can be evaluated, respectively, as
the real and the imaginary part of c�1� which, on

account of Eqs. (27) and (32), can be expressed as

c�1� � 1F1�a, 1; 2o�
2o
�
2a 1F1�a� 1, 2; 2o� ÿ 1F1�a, 1; 2o�

� : �35�

Values of W1�1� and W2�1� for B in the range
10RBR500, obtained by employing Eq. (35), are
reported in Table 1 for Pe � 0:5, 1 and in Table 2 for

Pe � 10, 100. Tables 1 and 2 show that the amplitude
of the dimensionless temperature oscillations at the
wall, given by kc�1�k, is a decreasing function of B for

a ®xed value of Pe. Moreover, this decrease of kc�1�k
is steeper for smaller values of Pe.
On account of Eq. (34), Eq. (33) can be rewritten as

Nu �

2
�
g� sin�Bx���

11

24
� 8

Pe2

�
g� W1�1� sin�Bx� �

�
W2�1� � 8

B

�
cos�Bx�

:

�36�

The local Nusselt number is a periodic function of x
with a period equal to 2p=B: This function is free of
singularities provided that the denominator on the

right-hand side of Eq. (36) does not vanish, i.e. if the
condition

W1�1�2�
�
W2�1� � 8

B

�2
<

��
11

24
� 8

Pe2

�
g

�2
�37�

is ful®lled.
Let us ®rst describe the behavior of the Nusselt

number for g � 1: If g � 1, the condition expressed by
Eq. (37) is certainly ful®lled for B > 10ÿ2: The pre-
cision of the calculus does not allow to ®nd a lower

value of B, which does not ful®l the inequality
expressed by Eq. (37). However, one can assume that,
if g � 1, no singularities a�ect the local Nusselt num-

ber. In fact, for instance, if r0 � 1 cm, the values Pe �
10 and B � 10ÿ2 correspond to an axial period of the
wall heat ¯ux 2p=b � 125:7 m. Axial periods of this
order of magnitude hardly allow one to attain, in prac-

tice, the condition of fully developed regime. In Figs. 4
and 5, plots of the local Nusselt number vs. the dimen-

Table 2

Values of W1�1� and W2�1� as functions of B, for Pe � 10 and

100

B Pe � 10 Pe � 100

W1�1� W2�1� � 103 W1�1� W2�1�

10 0.52313 ÿ809.57 0.45155 ÿ0.84301
20 0.48516 ÿ409.67 0.43171 ÿ0.47850
30 0.43828 ÿ267.34 0.40589 ÿ0.36985
40 0.39169 ÿ188.15 0.37956 ÿ0.31802
50 0.34916 ÿ136.42 0.35565 ÿ0.28577
60 0.31175 ÿ100.62 0.33509 ÿ0.26238
70 0.27939 ÿ75.263 0.31775 ÿ0.24400
80 0.25162 ÿ57.053 0.30315 ÿ0.22897
90 0.22784 ÿ43.829 0.29075 ÿ0.21637
100 0.20747 ÿ34.118 0.28009 ÿ0.20563
150 0.14029 ÿ11.696 0.24290 ÿ0.16898
200 0.10463 ÿ5.1054 0.21966 ÿ0.14692
250 0.083140 ÿ2.6326 0.20316 ÿ0.13153
300 0.068898 ÿ1.5235 0.19059 ÿ0.11984
350 0.058798 ÿ0.95758 0.18055 ÿ0.11046
400 0.051273 ÿ0.64008 0.17224 ÿ0.10266
450 0.045452 ÿ0.44860 0.16518 ÿ0.095974
500 0.040816 ÿ0.32642 0.15907 ÿ0.090134

Table 1

Values of W1�1� and W2�1� as functions of B, for Pe � 0:5 and

1

B Pe � 0:5 Pe � 1

W1�1� W2�1� � 106 W1�1� W2�1� � 106

10 0.10542 ÿ264.78 0.22359 ÿ4579.6
20 0.051299 ÿ32.095 0.10541 ÿ529.39
30 0.033903 ÿ9.4218 0.069007 ÿ153.63
40 0.025319 ÿ3.9570 0.051299 ÿ64.189
50 0.020203 ÿ2.0206 0.040825 ÿ32.681
60 0.016807 ÿ1.1673 0.033903 ÿ18.843
70 0.014389 ÿ0.73418 0.028989 ÿ11.836
80 0.012579 ÿ0.49139 0.025319 ÿ7.9140
90 0.011173 ÿ0.34487 0.022473 ÿ5.5500
100 0.010050 ÿ0.25127 0.020203 ÿ4.0412
150 0.0066890 ÿ0.074323 0.013423 ÿ1.1932
200 0.0050125 ÿ0.031329 0.010050 ÿ0.50254
250 0.0040080 ÿ0.016032 0.0080322 ÿ0.25704
300 0.0033389 ÿ0.0092748 0.0066890 ÿ0.14865
350 0.0028612 ÿ0.0058393 0.0057307 ÿ0.093563
400 0.0025031 ÿ0.0039112 0.0050125 ÿ0.062657
450 0.0022247 ÿ0.0027465 0.0044544 ÿ0.043994
500 0.0020020 ÿ0.0020020 0.0040080 ÿ0.032064
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sionless axial coordinate are reported for three di�er-
ent values of Pe. The plots in Fig. 4 have been drawn
for B � 10, while those in Fig. 5 have been drawn for
B � 100: Both ®gures show that the amplitude of the

oscillations of Nu reduces for decreasing values of Pe.
Moreover, it can be easily veri®ed that the plots of Nu
vs. x in the case Pe � 100 are very similar to those in

the case Pe41:
If no singularities arise, the mean value of the local

Nusselt number is given by

Nu � B

2p

�2p=B
0

Nu dx: �38�

On account of Eq. (36), the integral on the right-hand

side of Eq. (38) can be expressed as

Nu � 2������������������������������������������������������������������������������
11

24
� 8

Pe2

�2

ÿW1�1�2ÿ
�
W2�1� � 8

B

�2s

�

0BBB@1ÿ
�
11

24
� 8

Pe2

�
W1�1�

W1�1�2�
�
W2�1� � 8

B

�2
1CCCA

� 2W1�1�

W1�1�2�
�
W2�1� � 8

B

�2 :

�39�

Values of the mean Nusselt number for g � 1 are

reported in Table 3 for di�erent values of Pe and for
B in the range 10RBR500: Table 3 shows that for Pe
>1, the mean Nusselt number, if considered as a func-

tion of B, ®rst decreases and then increases. The mini-
mum is reached for di�erent values of the parameter
B, depending on the value assumed by the Peclet num-

ber. A comparison between the values reported in
Table 3 and those reported in Ref. [15] shows that the
values of Nu for Pe � 1000 are almost equal to those

obtained in the case of negligible axial heat conduction

�Pe41).
Let us now describe the behavior of the Nusselt

number for g � 0: If g � 0, the inequality expressed by

Eq. (37) is never ful®lled, so that the local Nusselt
number is always a�ected by singularities. This means
that, for every value of B and Pe, there exist axial pos-

itions where the wall temperature and the mixing-cup
temperature are equal, while the wall heat ¯ux does
not vanish. The same behavior was found in the
special case of negligible axial heat conduction Pe41
[15]. For every choice of the parameters B and Pe, the
local Nusselt number is a function of x which becomes
singular at the spatial positions x � xn for every integer

n, where xn is given by

xn � ÿ
1

B
arctg

�
BW2�1� � 8

BW1�1�
�
� pn

B
: �40�

Fig. 6 presents plots of the local Nusselt number vs.

the dimensionless axial coordinate for the case g � 0
and B � 100: The upper frame refers to Pe � 10, while
the lower frame refers to Pe � 100: On account of the

singularities which a�ect the local Nusselt number, the
integral which appears on the right-hand side of Eq.
(38) is ill de®ned. However, its principal value exists

and is given by

Nu � 2W1�1�

W1�1�2�
�
W2�1� � 8

B

�2 : �41�

The latter value can be employed to obtain the mean

Nusselt number. Values of Nu obtained by means of
Eq. (41) are reported in Table 4, for di�erent values of
Pe and for B in the range 10RBR500: The parameter

Nu signi®cantly increases with B, especially for small
values of Pe. A comparison between the values
reported in Table 4 and those reported in Ref. [15]

Fig. 4. Plots of Nu vs. x for g � 1 and B � 10, for Pe � 1, 5

and 100.
Fig. 5. Plots of Nu vs. x for g � 1 and B � 100, for Pe � 1,

10 and 100.
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allows one to infer that for Pe > 100 the e�ects of
axial conduction are very poor.
Let us now discuss the behavior of Nu as a function

of Pe, for a ®xed value of B, both in the case g � 1

and in the case g � 0: Plots of the mean Nusselt num-
ber vs. Pe are reported in Fig. 7. The plots in the

upper frame refer to the case g � 1 and have been
drawn for B � 250, 500, 750 and 1000. The plots in
the lower frame refer to the case g � 0 and have been

drawn for B � 100, 200 and 500. Fig. 7 shows that, for
g � 1, the mean Nusselt number reaches an absolute
maximum for Pe � 25 if B > 500, a relative maximum
for Pe � 22 if B � 500 and is a strictly increasing func-

Table 3

Values of Nu in the case g � 1, for B in the range 10RBR500

B Pe � 0:5 Pe � 1 Pe � 10 Pe � 50 Pe � 100 Pe � 1000

10 0.061536 0.23444 3.3684 4.1415 4.1741 4.1850

20 0.061574 0.23526 3.1841 4.0095 4.0482 4.0613

30 0.061587 0.23561 3.1027 3.9214 3.9639 3.9783

40 0.061595 0.23581 3.0796 3.8633 3.9083 3.9236

50 0.061599 0.23593 3.0873 3.8247 3.8715 3.8875

60 0.061602 0.23601 3.1101 3.7989 3.8471 3.8636

70 0.061604 0.23607 3.1395 3.7814 3.8308 3.8479

80 0.061606 0.23612 3.1708 3.7695 3.8200 3.8376

90 0.061607 0.23615 3.2018 3.7613 3.8129 3.8310

100 0.061608 0.23618 3.2313 3.7558 3.8083 3.8269

150 0.061611 0.23627 3.3479 3.7482 3.8046 3.8256

200 0.061613 0.23632 3.4229 3.7534 3.8120 3.8351

250 0.061614 0.23634 3.4732 3.7633 3.8215 3.8466

300 0.061614 0.23636 3.5090 3.7751 3.8312 3.8580

350 0.061615 0.23637 3.5357 3.7880 3.8405 3.8686

400 0.061615 0.23638 3.5563 3.8017 3.8492 3.8785

450 0.061615 0.23639 3.5726 3.8159 3.8574 3.8876

500 0.061616 0.23640 3.5859 3.8305 3.8652 3.8960

Fig. 6. Plots of Nu vs. x for g � 0 and B � 100, for Pe � 10

(upper frame) and 100 (lower frame).

Table 4

Values of Nu in the case g � 0, for B in the range 10RBR500

B Pe � 0:5 Pe � 1 Pe � 10 Pe � 100 Pe � 1000

10 0.32401 0.65504 3.8219 4.3894 4.3961

20 0.63096 1.2351 4.1207 4.4844 4.4888

30 0.93843 1.8210 4.5633 4.6283 4.6291

40 1.2460 2.4081 5.1015 4.8047 4.8010

50 1.5536 2.9956 5.7020 4.9984 4.9895

60 1.8613 3.5834 6.3455 5.1977 5.1831

70 2.1689 4.1714 7.0214 5.3951 5.3743

80 2.4766 4.7594 7.7235 5.5864 5.5589

90 2.7843 5.3474 8.4477 5.7697 5.7349

100 3.0920 5.9355 9.1905 5.9446 5.9020

150 4.6304 8.8763 13.102 6.7124 6.6227

200 6.1688 11.817 17.201 7.3610 7.2117

250 7.7073 14.758 21.387 7.9389 7.7189

300 9.2457 17.699 25.617 8.4695 8.1688

350 10.784 20.640 29.871 8.9664 8.5755

400 12.323 23.582 34.140 9.4383 8.9482

450 13.861 26.523 38.418 9.8913 9.2934

500 15.340 29.464 42.703 10.330 9.6157
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tion of Pe if B � 250: The same ®gure reveals that, for
g � 0, the mean Nusselt number reaches a maximum

for Pe � 4 and that the position of this maximum is
almost independent of the value assumed by B. For
instance, for a duct with radius 5 mm, Pe � 4 and B �
100 correspond to an axial period of the wall heat ¯ux
2p=b � 2:5 mm. On the other hand, Pe � 25 and B �
1000 correspond, for the same duct, to an axial period

2p=b � 1:6 mm.
Finally, let us discuss the behavior of the local con-

vection coe�cient h in a special case. Let us consider
mercury ¯owing in a circular duct with radius r0 � 5

mm and a wall heat ¯ux distribution with b � 10 mÿ1.
The thermophysical properties of mercury at 208C
are the following [21]: k � 9:304 W/(m K), a �
4:941� 10ÿ6 m2/s, n � 1:147� 10ÿ7 m2/s. The convec-
tion coe�cient can be easily evaluated by employing
Eq. (36). Plots of the convection coe�cient h vs. the

axial coordinate x are reported in Figs. 8 and 9 for
�u � 0:022 and 0.006 m/s. As it can be easily veri®ed,
the values of mean velocity considered in this example
are such that the ¯ow regime of mercury is laminar.

Fig. 8 refers to the case g � 1, while Fig. 9 refers to
the case g � 0: In Fig. 9, the upper frame has been
drawn for �u � 0:006 m/s, while the lower frame for
�u � 0:022 m/s. As expected, both Figs. 8 and 9 show

that the convection coe�cient in the case �u � 0:022 m/

s is generally higher than that in the case �u � 0:006 m/
s. Fig. 8 reveals that, independently of the choice of �u,
the convection coe�cient collapses to zero for x �
0:471: In fact, on account of Eq. (33), one can easily

infer that, for g � 1, the convection coe�cient vanishes
whenever sin�bx� � ÿ1: Finally, Fig. 9 shows that a
slight di�erence in the position of the singularities

occurs between the cases �u � 0:006 and 0.022 m/s.

Fig. 8. Plots of h vs. x for mercury in the case g � 1: The
plots have been drawn for r0 � 5 mm, b � 10 mÿ1, and refer

to �u � 0:006 and 0.022 m/s.

Fig. 9. Plots of h vs. x for mercury in the case g � 0: The
plots have been drawn for r0 � 5 mm and b � 10 mÿ1. The
upper frame refers to �u � 0:006 m/s and the lower frame to

�u � 0:022 m/s.

Fig. 7. Plots of Nu vs. Pe. The plots in the upper frame have

been drawn for g � 1 and for B � 250, 500, 750 and 1000.

The plots in the lower frame have been drawn for g � 0 and

for B � 100, 200 and 500.
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4. Conclusions

The e�ects of axial heat conduction in the ¯uid have

been investigated for laminar forced convection in an
in®nitely long circular duct. A boundary condition
given by a sinusoidally varying axial distribution of

heat ¯ux has been considered. Reference has been
made to the hydrodynamically developed ¯ow. The
thermally developed region, where the temperature dis-

tribution can be expressed as the sum of a linear func-
tion and a periodic function of the axial coordinate,
has been studied.
Two di�erent boundary conditions have been ana-

lyzed: (a) a sinusoidal wall heat ¯ux such that the
modulus of the mean value is equal to the amplitude,
(b) a sinusoidal wall heat ¯ux with a vanishing mean

value. An analytical evaluation of the temperature ®eld
and of the local Nusselt number has been performed.
In particular, these quantities have been expressed in

terms of the con¯uent hypergeometric function. The
behavior of the temperature distribution has been com-
pared with that obtained by neglecting axial heat con-
duction in the ¯uid. Indeed, for small values of the

Peclet number, the amplitude of the sinusoidal waves
is signi®cantly reduced and the amplitude of the tem-
perature oscillations undergoes a steeper decrease mov-

ing from the wall to the axis of the duct.
It has been shown that, in case (a), no singularities

a�ect the local Nusselt number. On the other hand, in

case (b), singularities arise for any value of B and Pe.
The occurrence of these singularities is due the exist-
ence of axial positions where the wall temperature and

the mixing-cup temperature assume the same value,
while the wall heat ¯ux is nonzero.
The mean Nusselt number in an axial period has

been obtained and, whenever singularities are present,

this quantity has been evaluated as the principal value
of an integral. Moreover, the mean Nusselt number
has been plotted as a function of the Peclet number

for ®xed values of B, in both case (a) and case (b). The
plots reveal that, in case (a), the mean Nusselt number
reaches an absolute maximum for Pe � 25, provided

that B is higher than 500. On the other hand, in case
(b), the mean Nusselt number reaches a maximum for
Pe � 4, independently of the value assumed by B.
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